Algebra

EQUATIONS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction) Autumn 2 Spring 2	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction) Autumn 2	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) Autumn 2 solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division) Autumn 4 Spring 1		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes) Summer 2	express missing number problems algebraically Spring 2
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction) Autumn 2				find pairs of numbers that satisfy number sentences involving two unknowns Spring 2
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction) Autumn 2 Spring 1					enumerate all possibilities of combinations of two variables Spring 2

Algebra

Although formal algebraic notation is not introduced until Y6, algebraic thinking starts much earlier as exemplified by the 'missing number' objectives from $\mathrm{Y} 1 / 2 / 3$

